

Product Specification AUO Display Plus Corporation G19 ation

G185HAN01.3

(V)	Р	rel	im	ina	ry	Sp	ec	cific	cat	ioı	n

() Final Specification	1
-------------------------	---

ification
ification
18.5" Color TFT-LCD
G185HAN01.3
nfidential

Customer	Date	Approved by Date
	AUO DI AVNE	Flossie Chuang 2021/06/28
Checked & Approved by	202	Prepared by
		Athena Wu 2021/06/28
	ANNE	General Display Business Unit/ AUO Display Plus corporation

Product Specification G18 AUO Display Plus Corporation

G185HAN01.3

AUO Display Plus Corporation

1. Handling Precautions	6
2. General Description	7
2.1 Display Characteristics	7
2.2 Optical Characteristics	
3. Functional Block Diagram	13
4. Absolute Maximum Ratings	14
4.1 TFT LCD Module	14
4.2 Absolute Ratings of Environment	9
5. Electrical characteristics	15
5.1 TFT LCD Module	15
5.1.1 Power Specification	15
5.1.2 Signal Electrical Characteristics	16
5.2 Backlight Unit	18
6. Signal Characteristic	20
6.1 Pixel Format Image	20
6.2 Scanning Direction	20
6.3 Signal Description	21
6.3.2 TFT LCD Module Pin Assignment	
6.4 Interface Timing	24
6.4.1 Timing Characteristics	24
6.4.2 Input Timing Diagram	
6.5 Power ON/OFF Sequence	25
7. Reliability Test	
8. Shipping Label & Packaging	31
8.1 Shipping Label	31
8.2 Packaging	32
8.3 Palletizing	34
8.3 Palletizing9.Mechanical Characteristics	36
10. Safety	37
10.1 Sharp Edge Requirements	37
10.2 Materials	

Product Specification AUO Display Plus Corns

G185HAN01.3

10.2.1 Toxicity	37
10.2.2 Flammability	37
10.3 Capacitors	37
10.4 National Test Lah Requirement	37

AUO Display Plus Confidential
AUO Display Plus Confidential
AVNET EU
20220413 20:56:29

Product Specification AUO Display Plus Corporation G10

G185HAN01.3

Record of Revision

Version & Date	Page	Old description	New Description
0.0 / 2021/06/16		P. 20413	
		8.3 Palletizing Box stacked	8.3 Palletizing Box stacked
0.1 / 2021/06/28	26	Module by air: (2 *5) *5 layers, One pallet put 50 boxes, total 400pcs module	Module by air: (2) *5 layers, One pallet put 10 boxes, total 80pcs module
		Module by sea: One pallet (2 *5) *5 layers + One pallet (2 *5) *1ayers , total 480pcs module	Module by sea: One pallet (2) *5 layers + One pallet (2) *1ayers , total 96pcs module
		Module by sea_ HQ : One pallet (2 *5) *5 layers + One pallet (2 *5) *2 layers , total 560pcs module	Module by sea_ HQ : One pallet (2) *5 layers + One pallet (2) *2 layers , total 112pcs module
		A NE 13	
		P 20a	
		202	
			ctial
			- Ede.
			Col
			100
		·olay	
		Distro	1.29
		AUTET	0.50
		V/4 VV/3	

AUO Display Plus Confidential
AVNET EU 20:56:29
AVNET AV 20:20413 20:56:29

G185HAN01.3

1. Handling Precautions

- Since front polarizer is easily damaged, pay attention not to scratch it. 1)
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- Wipe off water drop immediately. Long contact with water may cause discoloration or spots. 3)
- When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth. 4)
- Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. 5)
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open or modify the Module Assembly.
- Do not press the reflector sheet at the back of the module to any directions. 8)
- In case if a Module has to be put back into the packing container slot after it was taken out from the 9) container, do not press the center of LED lightbar edge. Instead, press at the far ends of the LED light bar edge softly. Otherwise the TFT Module may be damaged.
- At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface 10) Connector of the TFT Module.
- After installation of the TFT Module into an enclosure, do not twist nor bend the TFT Module even 11) momentarily. While designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950-1 or SC Confidenti UL60950-1), or be applied exemption.

2. General Description

Confidential Confidential Plus This specification applies to the 18.5 inch-wide Color AHVA (IPS-like) TFT-LCD Module G185HAN01.3.The display supports the FHD [1920(H) x 1080(V)] screen format and 16.7M colors (True 8 bit). All input signals are eDP interface compatible.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25°C condition:

ITEMS	Unit	SPECIFICATIONS
Screen Diagonal	[mm]	469.16(18.47")
Active Area	[mm]	408.96 (H) x 230.04 (V)
Pixels H x V		1920x1080
Pixel Pitch	[um]	213 (per one triad) × 213
Pixel Arrangement		R.G.B. Vertical Stripe
Display Mode		AHVA mode, Normally black
White Luminance (Center)	[cd/m ²]	500 cd/m ² (Typ.)
Contrast Ratio	10	1000 (Typ.)
Optical Response Time	[msec]	20ms
Nominal Input Voltage VDD	[Volt]	3.3V (Typ)
Power Consumption	[Watt]	21.2 W(Max)

G185HAN01.3

(VDD line + LED line)		D. EO - 1:39
Weight	[Grams]	1200 (Typ)
Physical Size	[mm]	428.24 (W) x 252.87 (H) x 8.03(D)Typ
		429.30 (W) x 253.06(H) x 9.13(D)Typ with hook
Electrical Interface		EDP
Support Color		16.7M colors, True 8 bit
Surface Treatment		Anti-Glare, 3H
RoHS Compliance		RoHS Compliance
Temperature Range		Blus
Operating	[°C]	-20~ 70
Storage (Shipping)	[°C]	-20~ 70

AUO Display Plus Confidential
AUNET EU 20:56:29
AVNET EU 20:56:29 Document version 0.1

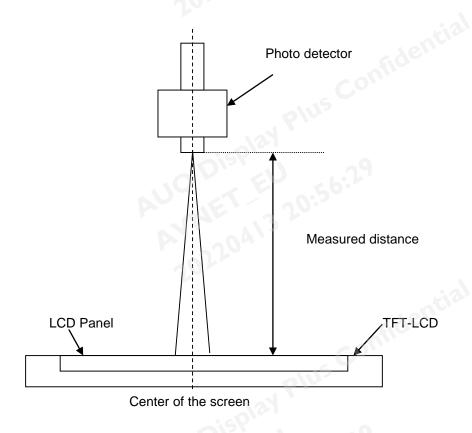
G185HAN01.3

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25 °C:

ltem	Unit Conditions		Min.	Тур.	Мах.	Note
		Horizontal (Right)		89		
Viewing Angle	[dograp]	CR >10 (Left)		89	Clos	2
Viewing Angle	[degree]	Vertical (Up)		89	-	2
		CR > 10 (Down)	Co.	89	-	
Contrast ratio		Normal Direction	800	1000	_	3
		Raising Time (T _{rR})		10	20	
Response Time	[msec]	Falling Time (T _{rF})	.19	10	20	4
		Raising + Falling	.56.	20	40	
		Red x	0.596	0.646	0.696	
	P	Red y	0.282	0.332	0.382	
Color / Chromaticity		Green x	0.250	0.300	0.350	
Coordinates (CIE)		Green y	0.555	0.605	0.655	5
		Blue x	0.096	0.146	0.196	3
		Blue y	0.017	0.067	0.117	
Color Coordinatos (CIT) M/laita		White x	0.249	0.299	0.349	
Color Coordinates (CIE) White		White y	0.265	0.315	0.365	
Central Luminance	[cd/m ²]	sispla	400	500		6
Luminance Uniformity	[%]	0 60	80	85		7
Color Gamut	%	25		72		

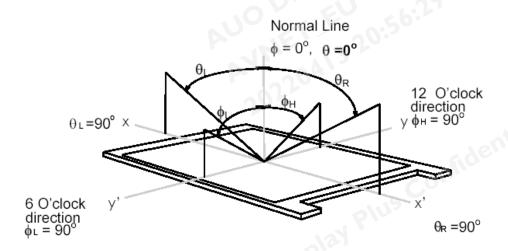
AUNET EU 20:56:29
ANNET EU 20:56:29 Document version 0.1



Product Specification AU OPTRONICS COST

G185HAN01.3

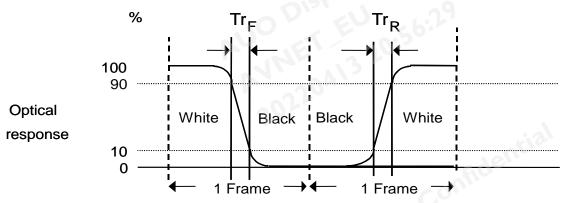
Note 1: Measurement method


The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring (at surface 35°C). In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room.

Note 2: Definition of viewing angle measured by ELDIM (EZContrast 88)

Viewing angle is the measurement of contrast ratio ≥10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

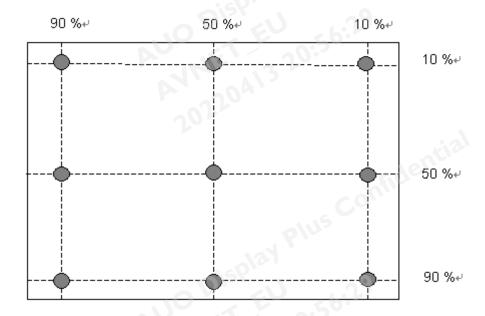
AU OPTRONICS CORPORATION



Note 3: Contrast ratio is measured by TOPCON SR-3

Note 4: Definition of Response time measured by Westar TRD-100A

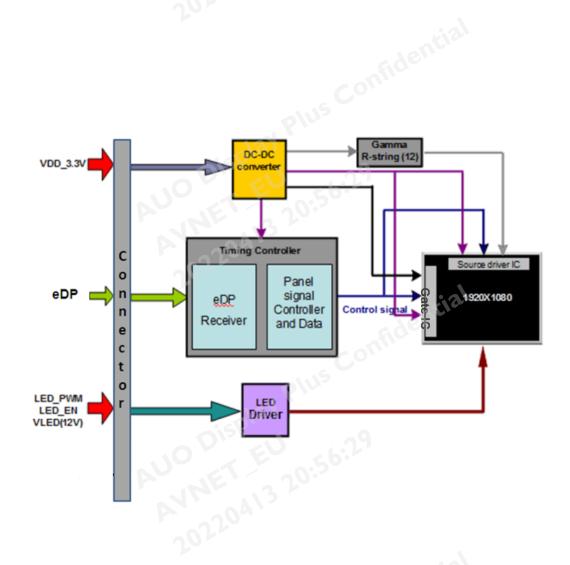
The output signals of photo detector are measured when the input signals are changed from "Full Black" to "Full White" (rising time, Tr_R), and from "Full White" to "Full Black" (falling time, Tf_F), respectively. The response time is interval between the 10% and 90% (1 frame at 60 Hz) of amplitudes.


 $Tr_R + Tf_F = 20 \text{ msec (typ.)}.$

Note 5: Color chromaticity and coordinates (CIE) is measured by TOPCON SR-3

Note 6: Central luminance is measured by TOPCON SR-3

Note 7: Luminance uniformity of these 9 points is defined as below and measured by TOPCON SR-3



Minimum Luminance in 9 points (1 - 9) Uniformity = Maximum Luminance in 9 Points (1 - 9) AUO Display Plus Confidential
AUNET EU
AVNET AV 20:56:29

AVNET EU 20:56:29 Document version 0.1

3. Functional Block Diagram

The following diagram shows the functional block of the 18.5 inch Color TFT-LCD Module:

I/F PCB Interface:

I-PEX 20765-030E-11A

Mating Type:

20453-030T-01

AUO Display Plus Confidential
AUNET EU 20:56:29
AUNET AU 20:56:29 Document version 0.1

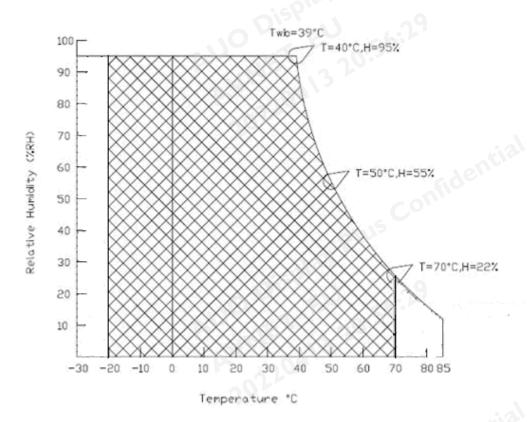
4. Absolute Maximum Ratings

4.1 TFT LCD Module

Absolute maximum ratings of the module are as following:								
4.1 TFT LCD Module								
ltem	Symbol	Min	Max	Unit	Conditions			
Logic/LCD Drive Voltage	VDD	-0.3	+3.6	[Volt]	Note 1,2			

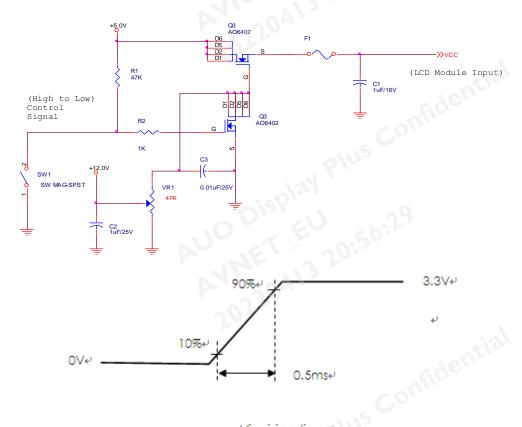
4.2 Absolute Ratings of Environment

Item	Symbol	Min.	Max.	Unit	Conditions
Operating Temperature	TOP	-20	70	[°C]	
Operation Humidity	HOP	5	95	[%RH]	N/a+a 2 0 4
Storage Temperature	TST	-20	70	[°C]	Note 3 & 4
Storage Humidity	HST	5	95	[%RH]	


Note 1: With in Ta (25 °C)

Note 2: Permanent damage to the device may occur if exceeding maximum values

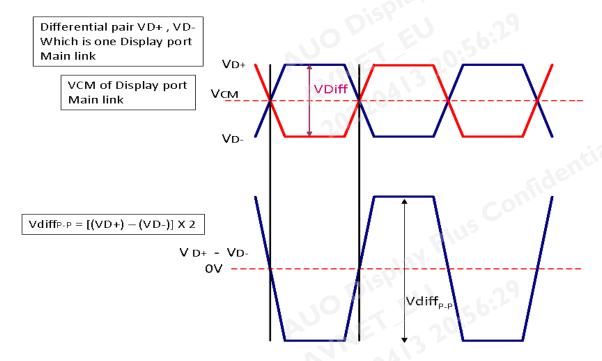
Note 3: For quality perfermance, please refer to AUO IIS(Incoming Inspection Standard).


Note 4: Operation Temperature +70°C is defined as panel surface termperature.

AUNET EU 20:56:29
AVNET AU 20:56:29 Document version 0.1

			Tenpo	erature °C			
5.	Electrical c	haracteristics					
5.1		Module pecification pecifications are as fol	lows:				
	Symbol	Parameter	Min	Тур	Max	Unit	Conditions
	VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	+/-10%
	IDD	Input Current	-	0.8	1.1	[A]	VDD= 3.3V, All White Pattern At 60Hz,
	PDD	VDD Power	-	2.64	3.63	[Watt]	VDD= 3.3V, All White Pattern At 60Hz
	IRush	Inrush Current	-	o Bisi	3	[A]	Note 1
	VDDrp	Allowable Logic/LCD Drive Ripple Voltage	A	ME	100	[mV] p-p	VDD= 3.3V, All White Pattern At 60Hz

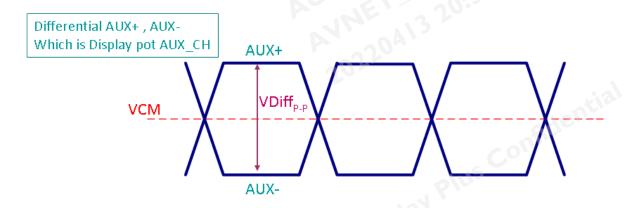
Note 1: Measurement conditions:



Vin rising time∙

5.1.2 Signal Electrical Characteristics Signal electrical characteristics are as follows;

Display Port main link signal:


AVNET EU 20:56:29 Document version 0.1

	Display port ı	main link			
		Min	Тур	Max	unit
VCM	RX input DC Common Mode Voltage		0		V
VDiff _{P-P}	Peak-to-peak Voltage at a receiving Device	150		1320	mV

Follow as VESA display port standard V1.2

Display Port AUX CH signal:

Display port AUX_CH							
		Min	Тур	Max	unit		
VCM	AUX DC Common Mode Voltage		0		V		
VDiff _{P-P}	AUX Peak-to-peak Voltage at a receiving Device	0.4	0.6	0.8	V		

G185HAN01.3

Fallow as VESA display port standard V1.2

Display Port VHPD signal:

	Display port VHPD				
		Min	Тур	Max	unit
VHPD	HPD Voltage	2.7	Som	3.6	V

Fallow as VESA display port standard V1.2

5.2 Backlight Unit

Following characteristics are measured under a stable condition at 25 °C (Room Temperature):

Symbol	Parameter	Min.	Тур.	Max.	Unit	Remark
VCC	Input Voltage	10.8	12	13.2	[Volt]	iantia.
I _{VCC}	Input Current		1.3	1.47	[A]	100% PWM Duty
P _{VCC}	Power Consumption		15.6	17.56	[Watt]	100% PWM Duty
Irush LED	Inrush Current	-	-	3	[A]	
) / ₁ ==	On Control Voltage	3	5	5.5	Volt	
VLED on/off	Off Control Voltage	. 10		0.8	Volt	7
	Dimming Frequency	200		15k	[Hz]	
	Swing Voltage	3	3.3	5	V	
F _{PWM}	High Voltage	3	3.3	5	Volt	
	Low Voltage			0.8	Volt	rial .
	Dimming Duty Cycle	10	-	100	%	edence
I _F	LED Forward Current		74		mA	Ta = 25 °C
V _F	LED Forward Voltage	-	3.0	3.4	Volt	I _F =74mA, Ta = 25°C
P _{LED}	LED Power Consumption	-	12.43	14.09	Watt	$I_F = 74 \text{mA}, \text{ Ta} = 25^{\circ}\text{C}$
Operation Lifetime		50,000		EO	Hrs	I _F =74mA, Ta= 25°C

Note 1: Ta means ambient temperature of TFT-LCD module.

Note 2. VCC, Ivcc, P_{VCC}, Irush LED are defined for LED B/L.(100% duty of PWM dimming)

G185HAN01.3

- Note 3. I_F, V_F, P_{LED} are defined for single LED.
- Note 4: If G185HAN01.3 module is driven by high current or at high ambient temperature & humidity condition. The operating life will be reduced.
- Note 5: Operation life means brightness goes down to 50% initial brightness. Minimum operating life time is estimated data.

Note 6: Each LED light bar consists of 56 pcs LED package (7 strings x 8 pcs / string)

AUNET EU 20:56:29
AVNET AU 20:56:29 Document version 0.1

- 6. Signal Characteristic
- 6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

	1		1920
1st Line	R G B	R G B	R G B R G B
			Plus Plus
		P)	JODET EU 20:56:29
			20220413
	,	:	Lantial Lantial
1080th Line	R G B	R G B	eren eren eren eren eren eren eren eren

6.2 Scanning Direction

The following figures show the image seen from the front view. The arrow indicates the direction of scan.

G185HAN01.3

6.3 Signal Description

The module uses a eDP receiver embedded in AUO's ASIC. eDP is a differential signal technology for LCD interface and a high-speed data transfer device.

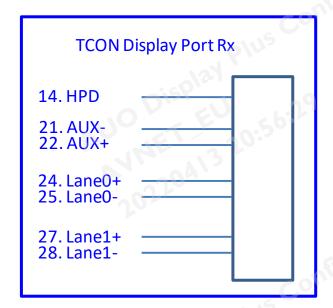
6.3.1 TFT LCD Module Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

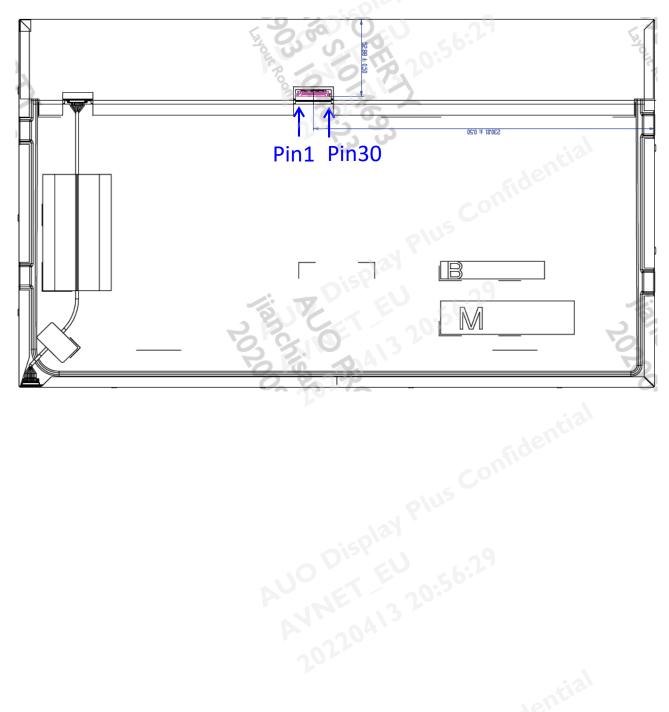
Connector Name / Designation	For Signal Connector
Manufacturer	IPEX or compatible
Type / Part Number	IPEX 20765-030E-11A or compatible
Mating Housing/Part Number	IPEX 20453-030T-01 or Compatible

6.3.2 TFT LCD Module Pin Assignment


PIN NO	Symbol	Function
1	NC	No Connect (Reserved for CM)
2	BL_PWR	Backlight power
3	BL_PWR	Backlight power
4	BL_PWR	Backlight power
5	BL_PWR	Backlight power
6	NC	No connect (Reverse for AUO TEST only)
7	NC	No connect (Reverse for AUO TEST only)
8	BL PWM DIM	System PWM signal Input
9	BL_Enable	Backlight On / Off
10	BL_GND	Backlight_ground
11	BL_GND	Backlight_ground
12	BL_GND	Backlight_ground
13	BL_GND	Backlight_ground
14	HPD	HPD signal pin
15	LCD GND	LCD logic and driver ground
16	LCD GND	LCD logic and driver ground
17	LCD_Self_Test	No connect(Reverse for LCD panel shelf test Enable)

18	LCD_VCC	LCD logic and driver power
19	LCD_VCC	LCD logic and driver power
20	H_GND	High Speed Ground
21	AUX_CH_N	Comp Signal Auxiliary Ch.
22	AUX_CH_P	True Signal Auxiliary Ch.
23	H_GND	High Speed Ground
24	Lane0_P	True Signal Link Lane 0
25	Lane0_N	Comp Signal Link Lane 0
26	H_GND	High Speed Ground
27	Lane1_P	True Signal Link Lane 1
28	Lane1_N	Comp Signal Link Lane 1
29	H_GND	High Speed Ground
30	NC	No Connect

Note1: Start from left side.


Note2: Input signals shall be low or High-impedance state when VDD is off.

Note3: Internal circuit of eDP inputs are as following.

G185HAN01.3

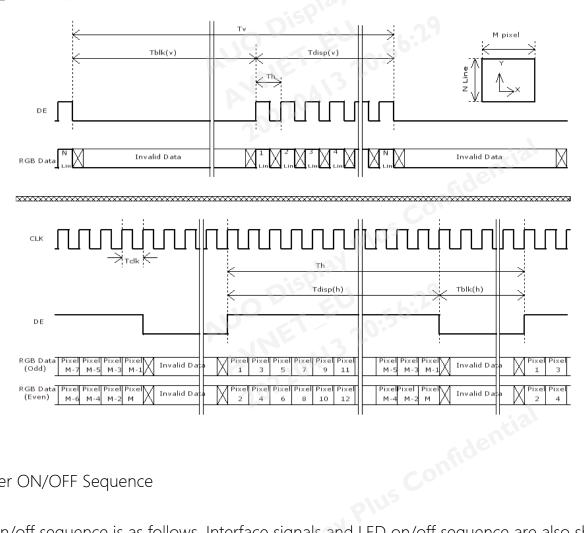
AUO Display Plus Confidential
AUNET EU 20:56:29
AVNET AU 20:56:29

6.4 Interface Timing

6.4.1 Timing Characteristics

Basically, interface timings should match the 1920x1080 /60Hz manufacturing guide line timing.

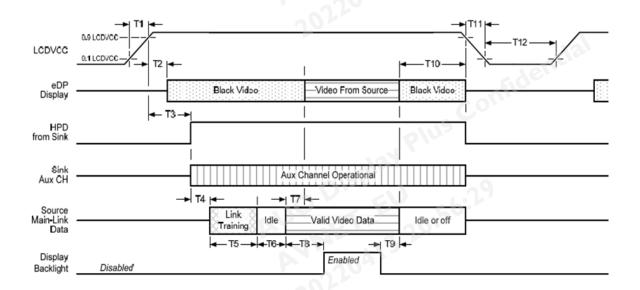
Parameter Symbol Min. Typ. Max. Unit	_						
	Parar	meter	Symbol	Min.	Тур.	Max.	Unit
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Frame	e Rate	-	-	60	250	Hz
Vertical Section Active T_{VD} 1080 T_{Line} Blanking T_{VB} 10 36 A Horizontal Section Period T_{HD} 2000 2104 1920+B Active T_{HD} 1920 T_{Clock} Blanking T_{HB} 80 184 B	Clock fre	equency	1/ T _{Clock}		141	,0,-	MHz
Section Active T_{VD} 1080 T_{Line} Blanking T_{VB} 10 36 A Horizontal Section Period T_{H} 2000 2104 1920+B Blanking T_{HB} 80 184 B Tolock aximum clock frequency = (1920+B)*(1080+A)*60 < 145MHz		Period	T _V	1084	1116	1080+A	
		Active	T _{VD}	- play	1080		T_{Line}
Horizontal Section Active T_{HD} 1920 T_{Clock} Blanking T_{HB} 80 184 B ode only naximum clock frequency = $(1920+B)*(1080+A)*60 < 145MHz$	Section	Blanking	T _{VB}	10	36	79 A	
Section $Active$ T_{HD} 1920 T_{Clock} Blanking T_{HB} 80 184 B ode only naximum clock frequency = (1920+B)*(1080+A)*60 < 145MHz		Period	T _H	2000	2104	1920+B	
Blanking T_{HB} 80 184 B ode only naximum clock frequency = $(1920+B)*(1080+A)*60 < 145MHz$		Active	T _{HD}	113	1920		T_{Clock}
ode only naximum clock frequency = (1920+B)*(1080+A)*60 < 145MHz al value refer to VESA STANDARD Timing Diagram	Section	Blanking	Тнв	80	184	В	
	al value refer to	vesa standar	D				


AUNET EU 20:56:29
AVNET AU 20:56:29

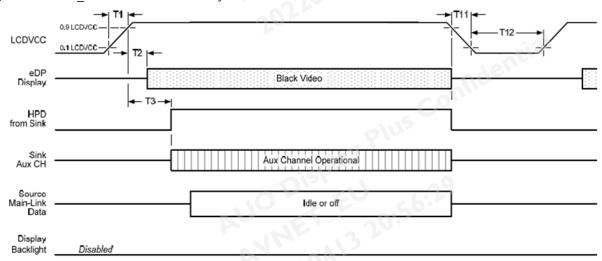
Note1: DE mode only

Note2: The maximum clock frequency = (1920+B)*(1080+A)*60 < 145MHz

Note3: Typical value refer to VESA STANDARD


6.4.2 Input Timing Diagram

6.5 Power ON/OFF Sequence


Power on/off sequence is as follows. Interface signals and LED on/off sequence are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off

Display Port panel power sequence:

Display port interface power up/down sequence, normal system operation

Display Port AUX CH transaction only:

ning parameter: Display port interface power up/down sequence, AUX CH transaction only

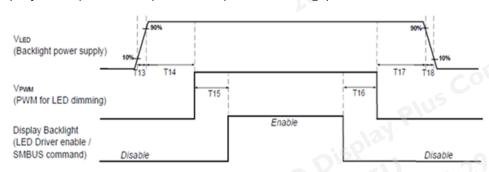
AUNET EU 20:56:29
AVNET AU 20:56:29

Display Port panel power sequence timing parameter

G185HAN01.3

Timing	D = = = t = 4! = =	D-value		Limits	1.5	P
parameter	Description	Reqd. by	Min.	Тур.	Max.	Notes
T1	power rail rise time, 10% to 90%	source	0.5ms	37	10ms	
Т2	delay from LCDVDD to black video generation	sink	0ms		200ms	prevents display noise until valid video data is received from the source
Т3	delay from LCDVDD to HPD high	sink	0ms		200ms	sink AUX_CH must be operational upon HPD high.
Т4	delay from HPD high to link training initialization	source				allows for source to read link capability and initialize.
Т5	link training duration	source		oli	115	dependant on source link to read training protocol.
Т6	link idle	source	ispla	N 1	. 1.9	Min accounts for required BS-Idle pattern. Max allows for source frame synchronization.
т7	delay from valid video data from source to video on display	sink	0ms	220	50ms	max allows sink validate video data and timing.
Т8	delay from valid video data from source to backlight enable	source	204			source must assure display video is stable.
Т9	delay from backlight disable to end of valid video data	source				source must assure backlight is no longer illuminated.
T10	delay from end of valid video data from source to power off	source	0ms		500ms	adenti
T11	power rail fall time, 905 to 10%	source			10ms	OLL III
T12	power off time	source	500ms	4	15	

Note1: The sink must include the ability to generate black video autonomously. The sink must automatically enable black video under the following conditions:


-upon LCDVDD power on (with in T2 max)-when the "Novideostream Flag" (VB-ID Bit 3) is received from the source (at the end of T9).

-when no main link data, or invalid video data, is received from the source. Black video must be displayed within 64ms (typ) from the start of either condition. Video data can be deemed invalid based on MSA and timing information, for example.

Note 2: The sink may implement the ability to disable the black video function, as described in Note 1, above, for system development and debugging purpose.

Note 3: The sink must support AUX CH polling by the source immediately following LCDVDD power on without causing damage to the sink device (the source can re-try if the sink is not ready). The sink must be able to respond to an AUX CH transaction with the time specified within T3 max.

0413 20:56:29 Display Port panel B/L power sequence timing parameter:

Note: When the adapter is hot plugged, the backlight power supply sequence is shown as below

				_	120		
VLED (Packlight news supply)		90% T. 10% VLED_Low	10%			s change: T	
(Backlight power supply) (Hot Plug)	/			\		1/PWM Fre	
_		T19	T20				
				Inz Cou			

ge.	Min (ms)	Max (ms)
T13	0.5	10
T14	10	-
T15	10	-
T16	10	-
T17	10	-
T18	0.5	10
T19	1*	-
T20	1*	-

Seamless change: T19/T20 = 5xT_{PWM}*

AUNET EU 20:56:29
AVNET AU 20:56:29

7. Reliability Test

	as following table.	
7. Reliability Test		
Environment test conditions are listed	as following table.	
Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50°C, 80%RH, 300hours	
High Temperature Operation (HTO)	Ta= 70°C, 300hours	3
Low Temperature Operation (LTO)	Ta= -20°C, 300hours	
High Temperature Storage (HTS)	Ta= 70°C, 300hours	
Low Temperature Storage (LTS)	Ta= -20°C, 300hours	
Vibration Test (Non-operation)	Acceleration: 1.5 G Wave: Random Frequency: 10 - 200 Hz	
Shock Test (Non-operation)	Acceleration: 50 G Wave: Half-sine Active Time: 20 ms	
Thermal Shock Test (TST)	-20°C /30min, 60°C /30min, 100 cycles	1
On/Off Test	On/10sec, Off/10sec, 30,000 cycles	
ESD (Electro Static Discharge)	Contact Discharge: \pm 8KV, 150pF(330 Ω) 1sec, 8 points, 25 times/ point. Air Discharge: \pm 15KV, 150pF(330 Ω) 1sec 8 points, 25 times/ point.	2

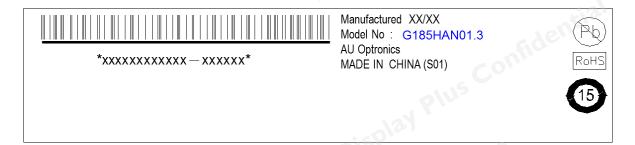
Note 1. The TFT-LCD module will not sustain damage after being subjected to 100 cycles of rapid temperature change. A cycle of rapid temperature change consists of varying the temperature from -20°C

G185HAN01.3

to 60°C, and back again. Power is not applied during the test. After temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on.

Note 2. According to EN61000-4-2, ESD class B: Some performance degradation allowed. No data lost. Self-recoverable. No hardware failures.

AUO Display Plus Confidential
AUNET EU 20:56:29
AUNET AU 20:56:29


Note 3: No function occurs Mura shall be ignored after high temperature reliability test. Ly te

G185HAN01.3

- 8. Shipping Label & Packaging
- 8.1 Shipping Label

The label is on the panel as shown below:

Note 1: For Pb Free products, AUO will add for identification.

Note 2: For RoHS compatible products, AUO will add RoHS for identification.

Note 3: For China RoHS compatible products, AUO will add of for identification.

Note 4: The Green Mark will be presented only when the green documents have been ready by AUO Internal Green Team.

Display Plus Confidential
NET EU 20:56:29
220413 20:56:29 Document version 0.1

AUO Display Plus Confidential
AVNET EU 20:56:29
AVNET EU 20:56:29

G185HAN01.3

8.2 Packaging

G185HAN01.3

整包產品輕放入箱·在蓋上層 EPE PAD.

紙箱用膠帶工字型封箱·貼上外箱貼紙.

Max capacity: 8 TFT-LCD module per carton

Max weight: 13.0 kg per carton

AUO Display Plus Confidential
AVNET EU 20:56:29
AVNET AU 20:56:29 Outside dimension of carton: 635mm(L)*475mm(W)*280mm (H)

Pallet size: 980 mm * 740 mm * 132mm

G185HAN01.3

8.3 Palletizing

Box stacked

Module by air: (2) *5 layers, one pallet put 10 boxes, total 80pcs module

Module by sea: One pallet (2) *5 layers + One pallet (2) *1ayers , total 96pcs module

Ls modu.

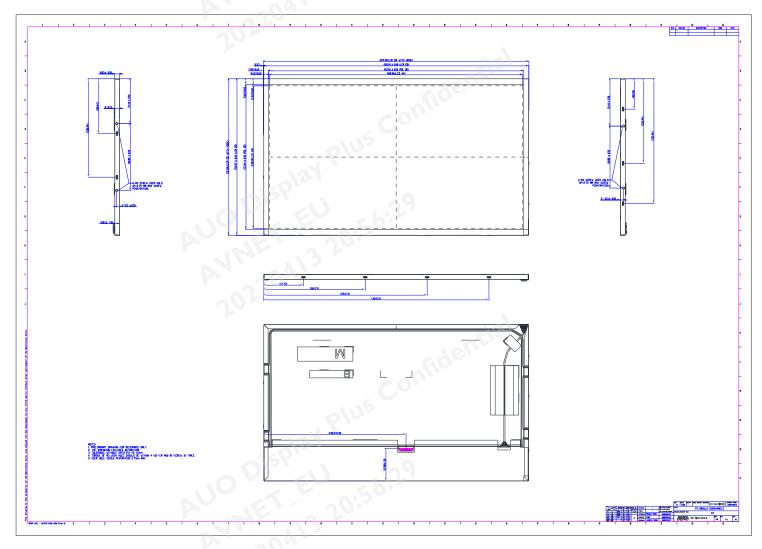
Confidential

AVNE 143 20:56:29 Module by sea HQ: One pallet (2) *5 layers + One pallet (2) *2 layers , total 112pcs module

AUO Display Plus Confidential
AUNET EU 20:56:29
AVNET AU 20:56:29

Product Specification

G185HAN01.3


AU OPTRONICS CORPORATION

Product Specification

G185HAN01.3

AU OPTRONICS CORPORATION

10. Safety

10.1 Sharp Edge Requirements

aplay Plus Confidenti There will be no sharp edges or comers on the display assembly that could cause injury.

10.2 Materials

10.2.1 Toxicity

There will be no carcinogenic materials used anywhere in the display module. If toxic materials are used, they will be reviewed and approved by the responsible AUO toxicologist.

10.2.2 Flammability

All components including electrical components that do not meet the flammability grade UL94-V1 in the module will complete the flammability rating exception approval process.

The printed circuit board will be made from material rated 94-V1 or better. The actual UL flammability rating will be printed on the printed circuit board.

10.3 Capacitors

If any polarized capacitors are used in the display assembly, provisions will be made to keep them from being inserted backwards.

10.4 National Test Lab Requirement

The display module will satisfy all requirements for compliance to: .. ınformation Techn

UL 60950-1, Second Edition

U.S.A. Information Technology Equipment

AUO Display Plus Confidential
AUNET EU 20:56:29
AVNET AV 20:20413 20:56:29 Document version 0.1